Introduction to Java Programming

Handout #6 Tools Reference.doc

Handout 6 – Tools Reference

This handout provides a quick reference to some of the core Java development tools. The following examples assume the following project directory structure:

Under the directory c:\intro2java:

.\bin – root directory for compiled Java classes (.class files)

.\docs – directory to hold documentation, e.g. generated by Javadoc

.\src – root source directory, contains .java files

The CLASSPATH

The CLASSPATH is a system property that is used by the Java Virtual Machine to find Java classes referenced by an application. The value of the CLASSPATH is simply a semi-colon (Windows) or colon (Unix) delimited list of directories or Jar files
. When attempting to import packages referenced by a class, the JVM will check each of these directories and Jar files in turn, until it finds a class with the correct name.

Wrongly configuring the CLASSPATH is often the most frustrating and confusing problem encountered with Java programming!

As an illustration, assume we have a class that imports the package intro2java, i.e. the class file includes the following line:

import intro2java.*;

Assuming the above directory structure, the following command will set the CLASSPATH on a Windows machine, appending our directory of class files to the current value of the CLASSPATH:

set CLASSPATH=%CLASSPATH%;c:\intro2java\bin

The CLASSPATH is read by all of the Java tools so its important to set it before working with them.

To view on Windows, use the following command:

echo %CLASSPATH%

Java Compiler

The Java compiler is invoked with the javac executable. E.g:

javac MyClass.java

javac intro2java/Calculator.java

The compiler requires the java extension to be specified.

It is good practice to keep your Java source code in a directory structure that maps to their package names. E.g. classes in the package intro2java.examples should be stored in:

c:\intro2java\src\intro2java\examples

By default the compiler will place the compiled classes in the same directory as the source. Using the –d flag allows this behaviour to be altering by indicating an alternate directory into which the classes should be placed:

javac –d c:\intro2java\bin MyClass.java

The compiler will automatically create a directory for each package of classes.

Using the –d flag is a useful way to keep you source code and compiled classes separate.

Java Virtual Machine

Assuming the CLASSPATH is set appropriately, a given Java class can be executed using the java command, e.g:

java MyClass

java intro2java.Calculator

If the class is in a package then it’s fully qualified name must be used.

If the class doesn’t have a main method of the form:

public static void main(String[] args) { … }

then an error will be generated. The method must be declared exactly as given, although the name of the single parameter can be altered.

Javadoc

Java includes a documentation generator that will create HTML documentation automatically from Java classes. By default the documentation will list all classes along with their public methods, constants, etc. The documentation is fully cross-referenced, containing, for example, a browse-able A-Z index.

The documentation generator is invoked with the javadoc command. The command can accept a list of source files or packages as parameters e.g:

javadoc intro2java/Calculator.java

javadoc intro2java

As the application generates a large number of HTML files, its worthwhile getting it to generate the documentation into a separate directory, e.g:

javadoc –d c:\intro2java\docs intro2java

The generator will read specially formatted comments from within the Java source code and add their contents automatically to the generated documentation. These comments all use the following format:

/**

 * A javadoc comment. Note the double star

 */

If these comments appear directly before a class, method or constant definition in the source code, then the comments will be added to the generated HTML. E.g:

/**

 * A description of my class, which will be automatically

 * understood by javadoc

 */

public class MyClass

{

//other documentation

}

The comments may contain normal HTML tags e.g. Paragraph (<p>), Bold (), Italics (<i>) to improve the readability of the output.

Javadoc Tags

Javadoc understands a number special “tags” that can be used in the Javadoc comments to further customise the generated documentation. In some cases extra parameters must be passed to javadoc so that it processes this extra information.

The most commonly used tags are summarised below:

	Tag
	Where Used
	Example
	Description

	@author
	Class comments
	@author Leigh Dodds
	Adds the author’s name to the generated documentation, but only if the additional –author flag is passed to javadoc on the command line.

	@version
	Class comments
	@version 1.0
	Adds a version indicator. But only if the –version flag is included on the command line

	@deprecated
	Class or method comments
	@deprecated Don’t use this method any more
	Adds a “deprecation” message. Deprecation is used to mark code that should no longer be used. The javac compiler will also generate a warning if it encounters deprecation messages.

	@see
	Class or method comments
	@see package.class#member label
	Adds a “see also” link. The tag should be followed by a class and optionally a method name. The text of the link is the value of label

	@param
	Method comments
	@param name description
	Lists the name of a method parameter, and gives it a description. Can be used multiple times.

	@return
	Method comments
	@return the value of x+y
	Describes the return value of a method

Here’s a complete example:

/**

 * A <i>simple</i> Calculator

 *

 * @see calculator.AdvancedCalculator a more advanced alternative

 * @author Leigh Dodds

 * @version 1.0

 */

public class Calculator

{

 /**

 * Adds two numbers together and returns the result

 *

 * @param x the first number

 * @param y the second number

 * @return the value of x + y

 */

 public int plus(int x, int y)

 {

 return x + y;

 }

}

Jar

The jar command is used to package up java classes into a Java Archive
. Jar files are used as a handy way to package up Java code e.g. for delivering as an applet or application.

To create a Jar file use the following command:

jar cf jarFileName.jar *.class

The c parameter indicates that we’re creating a file, and the f parameter indicates the filename.

To examine the contents of a jar file use the t parameter:

jar tf jarFileName.jar

To extract the contents of a jar file use the x parameter:

jar xf jarFileName.jar

To update classes in an existing jar file use the v parameter:

jar uf jarFileName.jar *.class

Only those files that have been changed will be added to the jar file.

Jar files can be used to distribute source code and documentation as well as class files. To package up the entire project use:

jar cvf project.jar docs bin src

or

jar cvf project.jar *

Manifests

A jar file can contain a special index known as a manifest. This is a configuration file that can be used to specify extra information about the contents of the archive. The most useful feature of the manifest is its ability to indicate the class within the archive that contains the main method for the application.

To create a manifest, edit a file called Manifest.mf and enter the following:

Main-Class: your.class.Name

E.g.

Main-Class: intro2java.Calculator

Then create a Jar file containing the required class(es), but this time include a manifest using the m parameter
:

jar cmf Manifest.mf jarFileName.jar *.class

You can then run your application as follows:

java –jar jarFileName.jar

The JVM will then read the manifest and determine which class it should actually be running. On Windows this also means that you can double-click on a jar file and have its application execute automatically.

Further information

For more information about the various Java tools, visit:

http://java.sun.com/j2se/1.4.1/docs/tooldocs/tools.html
� Jar stands for Java ARchive. It is a zip file containing Java classes, and is the preferred means of packaging classes for distribution.

� It’s very similar to the tar command on Unix systems.

� The order in which you pass the m and the f parameters indicates whether the jar command expects the manifest name or jar file name as the next parameter on the command line. E.g. jar cfm jarFileName.jar Manifest.mf *.class

L. Dodds, October 2002

2/6

